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Abstract

Thrombus formation in the left atrium (LA) is a ma-
Jjor clinical complication associated with atrial fibrillation
(AF) and diastolic dysfunction (DD). This study proposes
a machine learning pipeline to predict thrombogenic re-
gions using hemodynamic indicators derived from patient-
specific Computational Fluid Dynamics (CFD) simula-
tions. A dataset comprising eight simulations from distinct
clinical scenarios (Normal, DDI, DDII, DDIII) and two
anatomical models was used. Four features—ECAP, OSI,
RRT, and TAWSS—were extracted and used to train and
evaluate eight classifiers. XGBoost was selected as the
best model based on Dice Score, using cross-validation
and statistical analysis (Friedman and Wilcoxon tests).
The final model achieved a Dice Score of 0.772 £+ 0.047
on the test set. Evaluation across scenarios confirmed
the model’s robustness, and spatial visualizations enabled
the identification of false positive and false negative re-
gions. This approach enables high-throughput thrombus
risk screening in patient-specific LA geometries and ad-
vances understanding of the hemodynamic correlates of
thrombogenesis in DD and AF.

1. Introduction

Atrial fibrillation (AF) is the most common cardiac ar-
rhythmia worldwide and is a leading cause of cerebral
ischemia, myocardial infarction, and venous thromboem-
bolism [1,2]. AF can occur in conjunction with ventricular
diastolic dysfunction (DD), a progressive condition char-
acterized by abnormal mechanical function during the di-
astolic phase of the cardiac cycle [3]. Both AF and DD
lead to alterations in atrial electromechanical function, re-
sulting in inefficient blood pumping into the ventricles,
atrial remodeling and enlargement, and increased blood
stasis, which promotes thrombogenesis [4].

The risk of ischemic events in patients with AF is ap-
proximately five times higher than in healthy individuals
[5]. Left atrial (LA) enlargement is frequently observed in
patients with paroxysmal or persistent AF and DD, partic-
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ularly in advanced stages. This enlargement reflects struc-
tural remodeling, including fibrosis, mechanical stress, and
chronic dilation, which contribute to electrical instability
[4]. These changes lead to abnormal atrial contraction pat-
terns, increasing stiffness of the LA wall over time, and
creating areas of blood stasis related to the generation of
thrombi, particularly in the left atrial appendage (LAA)
[6,7].

Computational Fluid Dynamics (CFD) has emerged as
a valuable tool for assessing hemodynamic characteristics
in AF [2, 8], but no CFD studies have yet examined DD-
specific hemodynamic conditions in the left atrium. CFD,
or in silico hemodynamics, provides high-resolution spa-
tiotemporal details, including velocity fields and derived
parameters such as wall shear stress (WSS) and hemody-
namic indicators (OSI, RRT, ECAP), which help identify
thrombogenic zones. However, there is still no consensus
on threshold values for stable clot formation [2, 8].

To address this, coagulation cascade models have been
proposed for the direct prediction of thrombus forma-
tion. These models solve advection-diffusion-reaction
equations for biochemical species involved in clotting.
Simplified versions (1-13 species) and artificially acceler-
ated kinetics have been developed to reduce computational
costs [9]. Few studies have applied these models to AF
[10,11], and none to DD.

This study aims to develop and evaluate a machine
learning framework capable of predicting thrombus-prone
regions in the left atrium using hemodynamic indicators
derived from patient-specific CFD simulations. By inte-
grating simplified coagulation cascade modeling as ground
truth, we investigate the discriminative power of four me-
chanical features (TAWSS, OSI, RRT, and ECAP) across
multiple anatomical models and clinical scenarios, includ-
ing atrial fibrillation and progressive stages of diastolic
dysfunction. The goal is to support early thrombus risk
stratification using high-throughput, interpretable models
grounded in physics-based simulations, while significantly
reducing the time required to generate reliable outputs.
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2. Mathematical Modeling

2.1. Computational Fluid Dynamics

The Ansys CFD package was used in the CFD simula-
tions. Five patient-specific 3D LA models were obtained
from open dataset [12]. Hybrid volumetric meshes were
generated. The 3D hemodynamic model was based on pre-
vious study [13]. The main characteristics are: laminar,
isothermal, incompressible, transient/pulsatile flow, with
non-Newtonian blood behavior (Carreau-Yasuda model).
The boundary conditions were: Inlets — pulsatile velocity,
adjusting the systolic/diastolic peak ratio (S/D) according
to the pathophysiology scenario. Outlet: constant pres-
sure of 8 mmHg at the mitral valve (MV), considering
open with a fixed area along the cardiac cycle [6]. Walls:
no-slip condition, due to the viscous blood, considering
rigid-walls, representing the worst-case AF scenario (ab-
sence of atrial contraction). The effects of DD were sim-
ulated in four case studies were simulated by modifying
the blood flow dynamics through the pulmonary veins, by
changing the systolic/diastolic (S/D) peak ratio guided by
clinical observations [14] and reflecting various stages of
ventricular diastolic dysfunction, as described in Table 1.
Five complete cardiac cycles were simulated, lasting 0.8
s, equivalent to a heart rate of 75 bpm and a cardiac out-
put about 5L/min, using a time step of 1 x 1072 s, and
time-averaged values were obtained for the last two car-
diac cycles.

Table 1. Description of the clinical scenarios simulated by
CFD for each of the five LA models. All cases were con-
sidered to be under the worst scenario of AF (rigid walls
and absence of atrial contraction).

Case Description S/D
0 (Normal) Normal venous return ~ 1.0
1 (DDI Altered relaxation pattern =~ 2.1
II (DDII) Pseudonormal condition =~ 0.5
III (DDIII) Restrictive pattern ~ 0.2

The thrombosis-prone regions were assessed by well-
established hemodynamic indicators based on WSS: the
Time-Averaged Wall Shear Stress (TAWSS), with the
thromboembolic risk classified as: TAWSS < 0.1 Pa high
risk, TAWSS > 0.4 Pa low risk. The Oscillatory Shear In-
dex (OSI), that describes the temporal change in the WSS
direction relative to the predominant flow, the thromboem-
bolic risk considered was: OSI > 0.25 high risk and OSI
< 0.1 low risk. The Relative Residence Time (RRT), with
a thromboembolic risk range of: RRT > 25 high risk and
RRT < 10 low risk, and the Endothelial cell activation po-
tential (ECAP) used to characterize thrombogenic suscep-
tibility, with its thromboembolic risk range: ECAP > 5

high risk and ECAP < 0.5 low risk [6, 15, 16].

The simplified biochemical model for thrombogenesis
(BMT) proposed by [9] was coupled to the 3D hemody-
namic model. The BMT starts from the intrinsic path of
coagulation, that can induce thrombus generation in the ab-
sence of tissue factor. Two cellular species - resting (RP)
and activated platelets (AP), and one biochemical species -
adenosine diphosphate (ADP), were considered in the nu-
merical model by advective-diffusive-reactive equations,
as described in previous study [13]. Also, the thrombus
aggregation intensity marker, a volumetric estimation of
stable clot, as proposed by [17] was integrated in the 3D
hemodynamic model, providing a direct quantification of
the thrombi, by defining a threshold of ~ 10~ 7[cm~3]
[13], based on the kinetic constants from [17] and [9], pre-
viously validated against ¢n vitro data of [17].

3. Model Selection

To identify the most effective classifier for thrombi pre-
diction from hemodynamic indicators, we implemented
a pipeline including preprocessing, model training, and
evaluation using Dice Score as the metric due to its rel-
evance in medical applications, especially in segmentation
tasks [18].

Simulated data from multiple patient-specific geome-
tries were saved in individual CSV files, each containing
spatial coordinates (X, Y, Z), four hemodynamic fea-
tures (ECAP, OSI, RRT, TAWSS), and a binary target la-
bel defined from the biochemical thrombogenesis model
(BMT), using the thrombus aggregation intensity marker.
Voxels above the threshold 10~ cm~3 were labeled as
thrombus-prone (1), while voxels below were labeled as
non-thrombus (0).

Outliers in ECAP, RRT, and TAWSS were detected us-
ing the IQR method and corrected via nearest-neighbor
interpolation. OSI required no correction. Although the
hemodynamic indicators are not strictly independent, mul-
ticollinearity was evaluated using Variance Inflation Fac-
tor (VIF < 7.07). These values indicate moderate correla-
tion but not to a degree that would compromise the perfor-
mance or stability of the classifiers.

Eight classifiers were evaluated: Logistic Regres-
sion, Ridge, Decision Tree, Random Forest, Extra Trees,
HGBC, LightGBM, and XGBoost. Each integrated into
a pipeline with Min-Max scaling. To ensure robust per-
formance estimation and prevent data leakage, a 20-fold
Group Shuffle Split strategy was adopted. This cross-
validation approach guaranteed that all simulation data
from a given case were kept within the same fold, avoiding
fragmentation across training and validation sets.

Dice Scores obtained across the 20-fold cross-validation
were compared using the Friedman test [19], which in-
dicated statistically significant differences among classi-
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fiers (p < 0.001). XGBoost achieved the highest av-
erage Dice Score (0.778 £ 0.048), followed closely by
Histogram-Based Gradient Boosting Classifier (HGBC;
0.775 £ 0.050) and LightGBM (0.773 £ 0.052), showing
a narrow performance gap among the top models.

To further investigate these differences, pairwise
Wilcoxon signed-rank tests with Holm correction were
performed. The resulting Critical Difference (CD) di-
agram (Figure 1) shows that XGBoost and Histogram-
Based Gradient Boosting Classifier (HGBC) formed the
top-performing clique, with no statistically significant dif-
ference between them (p > 0.05).
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Figure 1. Critical Difference (CD) diagram generated

from our classification results.

To complement this analysis, pairwise statistical com-
parisons were conducted to assess fold-wise consistency
between XGBoost and HGBC, confirming the robustness
of XGBoost across simulation scenarios. The applica-
tion of a Wilcoxon signed-rank test corroborated a sta-
tistically significant superiority of XGBoost over HGBC
(p = 0.008). These findings substantiate the choice of
XGBoost as the final model for evaluation on the held-out
test set.

4. Results

The final model, XGBoost, was retrained using the
training dataset (LAO1, LAO2, LAO4) and subsequently
evaluated on the test set (LAOS, LAQ9). All hemodynamic
features were corrected for outliers using spatial interpola-
tion and scaled via Min-Max normalization. Class imbal-
ance (= 1 : 7) was addressed using class weighting.

On the full test set (n = 281,125 points), the model
achieved a mean Dice Score of 0.772 + 0.047, indicating
high segmentation accuracy under challenging conditions
involving heterogeneous geometries and hemodynamics.

Analysis on a per-mesh basis revealed consistent per-
formance across multiple diastolic dysfunction stages and
patient-specific LA anatomies (Table 2). LA09-DDII
yielded the best result (Dice = 0.826), while LA05-DDIII
exhibited the lowest score (Dice = 0.701), likely due to in-
creased flow restriction and spatial complexity in that case.

A spatial visualization panel was created (Figure 2) to
show the ground truth, predictions, and classification er-
rors (TP, FP, FN).

Table 2. Dice score for each classification model evaluated
under distinct CFD-simulated mesh scenarios.

Model Scenario Dice
LAO5 DDI 0.703
LAO5 DDII 0.758
LAO5 DDIII 0.701
LAO5 NormalFA 0.788
LA09 DDI 0.815
LA09 DDII 0.826
LA09 DDIII 0.785
LA09 NormalFA 0.795
5. Conclusion

This study proposed a machine learning framework
to predict thrombus-prone regions in patient-specific left
atrial geometries using CFD-derived hemodynamic fea-
tures. By integrating simplified biochemical modeling as
the ground truth, we demonstrated that mechanical indica-
tors (TAWSS, OSI, RRT, ECAP) provide complementary
information for classification.

Among eight evaluated classifiers, XGBoost achieved
the highest and most consistent Dice Score, supported by
statistical comparisons using the Friedman test and pair-
wise Wilcoxon signed-rank tests. This validates its robust-
ness across multiple diastolic dysfunction scenarios.

The proposed approach enables high-throughput throm-
bus risk stratification and may assist in understanding
the mechanistic links between atrial hemodynamics and
thrombogenesis. Future developments should focus on
designing machine learning models capable of replacing
CFD simulations altogether, thereby reducing the time
required to obtain thrombus risk indicators from several
hours to just a few seconds, further supporting real-time
clinical decision-making.
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